LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Classification
نویسنده
چکیده
This paper describes the system developed at LIA for the SemEval-2017 evaluation campaign. The goal of Task 4.A was to identify sentiment polarity in tweets. The system is an ensemble of Deep Neural Network (DNN) models: Convolutional Neural Network (CNN) and Recurrent Neural Network Long Short-Term Memory (RNN-LSTM). We initialize the input representation of DNN with different sets of embeddings trained on large datasets. The ensemble of DNNs are combined using a score-level fusion approach. The system ranked 2 at SemEval-2017 and obtained an average recall of 67.6%.
منابع مشابه
SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision
In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitti, 2015b). We leverage large amounts of data with distant supervision to train an ensemble of 2-layer convolutional neural networks whose pre...
متن کاملTSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis
This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the thi...
متن کاملBB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
In this paper we describe our attempt at producing a state-of-the-art Twitter sentiment classifier using Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTMs) networks. Our system leverages a large amount of unlabeled data to pre-train word embeddings. We then use a subset of the unlabeled data to fine tune the embeddings using distant supervision. The final CNNs and LSTMs are...
متن کاملTWINA at SemEval-2017 Task 4: Twitter Sentiment Analysis with Ensemble Gradient Boost Tree Classifier
This paper describes the TWINA system, with which we participated in SemEval-2017 Task 4B (Topic Based Message Polarity Classification – Two point scale) and 4D (Two-point scale Tweet Quantification). We implemented ensemble based Gradient Boost Trees Classification method for both the tasks. Our system could perform well for the task 4D and ranked 13 th among 15 teams, for the task 4B our mode...
متن کاملNileTMRG at SemEval-2017 Task 4: Arabic Sentiment Analysis
This paper describes two systems that were used by the NileTMRG for addressing Arabic Sentiment Analysis as part of SemEval-2017, task 4. NileTMRG participated in three Arabic related subtasks which are: Subtask A (Message Polarity Classification), Subtask B (Topic-Based Message Polarity classification) and Subtask D (Tweet quantification). For subtask A, we made use of our previously developed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017